دانلود رایگان


کتاب COMPOSITE MATERIALS DESIGN AND APPLICATIONS - دانلود رایگان



دانلود رایگان کتاب زبان اصلی COMPOSITE MATERIALS DESIGN AND APPLICATIONS نوشته Daniel Gay و Suong V. Hoa و Stephen W. Tsai

دانلود رایگان
کتاب COMPOSITE MATERIALS DESIGN AND APPLICATIONS PART I: PRINCIPLES OF CONSTRUCTION
1 Composite Materials, Interest, and Properties
1.1 What Is Composite Material?
1.2 Fibers and Matrix
1.2.1 Fibers
1.2.2 Matrix Materials
1.3 What Can Be Made Using Composite Materials?
1.4 Typical Examples of Interest on the Use of Composite Materials
1.5 Examples on Replacing Conventional Solutions with Composites
1.6 Principal Physical Properties
2 Fabrication Processes
2.1 Molding Processes
2.1.1 Contact Molding
2.1.2 Compression Molding
2.1.3 Molding with Vacuum
2.1.4 Resin Injection Molding
2.1.5 Molding by Injection of Premixed
2.1.6 Molding by Foam Injection
2.1.7 Molding of Components of Revolution
2.2 Other Forming Processes
2.2.1 Sheet Forming
2.2.2 Profile Forming
2.2.3 Stamp Forming
2.2.4 Preforming by Three-Dimensional Assembly
2.2.5 Cutting of Fabric and Trimming of Laminates
2.3 Practical Hints on Manufacturing Processes
2.3.1 Acronyms
2.3.2 Cost Comparison
3 Ply Properties
3.1 Isotropy and Anisotropy
3.1.1 Isotropic Materials
3.1.2 Anisotropic Material
3.2 Characteristics of the Reinforcement–Matrix Mixture
3.2.1 Fiber Mass Fraction
3.2.2 Fiber Volume Fraction
3.2.3 Mass Density of a Ply
3.2.4 Ply Thickness
3.3 Unidirectional Ply
3.3.1 Elastic Modulus
3.3.2 Ultimate Strength of a Ply
3.3.3 Examples
3.3.4 Examples of “High Performance Unidirectional Plies
3.4 Woven Fabrics
3.4.1 Forms of Woven Fabric
3.4.2 Elastic Modulus of Fabric Layer
3.4.3 Examples of Balanced Fabrics/Epoxy
3.5 Mats and Reinforced Matrices
3.5.1 Mats
3.5.2 Summary Example of Glass/Epoxy Layers
3.5.3 Spherical Fillers
3.5.4 Other Reinforcements
3.6 Multidimensional Fabrics
3.7 Metal Matrix Composites
3.8 Tests
4 Sandwich Structures
4.1 What Is a Sandwich Structure?
4.2 Simplified Flexure
4.2.1 Stresses
4.2.2 Displacements
4.3 A Few Special Aspects
4.3.1 Comparison of Mass Based on Equivalent Flexural Rigidity (EI)
4.3.2 Buckling of Sandwich Structures
4.3.3 Other Types of Damage
4.4 Fabrication and Design Problems
4.4.1 Honeycomb: An Example of Core Material
4.4.2 Processing Aspects
4.4.3 Insertion of Attachment Pieces
4.4.4 Repair of Laminated Facings
4.5 Nondestructive Quality Control
5 Conception and Design
5.1 Design of a Composite Piece
5.1.1 Guidelines for Values for Predesign
5.2 The Laminate
5.2.1 Unidirectional Layers and Fabrics
5.2.2 Importance of Ply Orientation
5.2.3 Code to Represent a Laminate
5.2.4 Arrangement of Plies
5.3 Failure of Laminates
5.3.1 Damages
5.3.2 Most Frequently Used Criterion: Hill–Tsai Failure Criterion
5.4 Sizing of the Laminate
5.4.1 Modulus of Elasticity. Deformation of a Laminate
5.4.2 Case of Simple Loading
5.4.3 Case of Complex Loading—Approximate Orientation
Distribution of a Laminate
5.4.4 Case of Complex Loading: Optimum Composition of a Laminate
5.4.5 Practical Remarks: Particularities of the Behavior of Laminates
6 Joining and Assembly
6.1 Riveting and Bolting
6.1.1 Principal Modes of Failure in Bolted Joints
for Composite Materials
6.1.2 Recommended Values
6.1.3 Riveting
6.1.4 Bolting
6.2 Bonding
6.2.1 Adhesives Used
6.2.2 Geometry of the Bonded Joints
6.2.3 Sizing of Bonded Surfaces
6.2.4 Examples of Bonding
6.3 Inserts
7 Composite Materials and Aerospace Construction
7.1 Aircraft
7.1.1 Composite Components in Aircraft
7.1.2 Characteristics of Composites
7.1.3 A Few Remarks
7.1.4 Specific Aspects of Structural Resistance
7.1.5 Large Carriers
7.1.6 Regional Jets
7.1.7 Light Aircraft
7.1.8 Fighter Aircraft
7.1.9 Architecture of Composite Parts in Aircraft
7.1.10 Elements of Braking
7.1.11 The Future
7.2 Helicopters
7.2.1 The Situation
7.2.2 Composite Zones
7.2.3 Blades
7.2.4 Yoke Rotor
7.2.5 Other Composite Working Components
7.3 Propeller Blades for Airplanes
7.4 Turbine Blades in Composites
7.5 Space Applications
7.5.1 Satellites
7.5.2 Pressure Vessels
7.5.3 Nozzles
7.5.4 Other Composite Components
8 Composite Materials for Other Applications
8.1 Composite Materials and the Manufacturing of Automobiles
8.1.1 Introduction
8.1.2 Evaluation and Evolution
8.1.3 Research and Development
8.2 Composites in Naval Construction
8.2.1 Competition
8.2.2 Ships
8.3 Sports and Recreation
8.3.1 Skis
8.3.2 Bicycles
8.4 Other Applications
8.4.1 Wind Turbines
8.4.2 Compressed Gas Bottles
8.4.3 Buggy Chassis
8.4.4 Tubes for Off-Shore Installations
8.4.5 Biomechanics Applications
8.4.6 Telepherique Cabin
PART II: MECHANICAL BEHAVIOR OF LAMINATED MATERIALS
9 Anisotropic Elastic Media
9.1 Review of Notations
9.1.1 Continuum Mechanics
9.1.2 Number of Distinct
9.2 Orthotropic Materials
9.3 Transversely Isotropic Materials
10 Elastic Constants of Unidirectional Composites
10.1 Longitudinal Modulus
10.2 Poisson Coefficient
10.3 Transverse Modulus
10.4 Shear Modulus
10.5 Thermoelastic Properties
10.5.1 Isotropic Material: Recall
10.5.2 Case of Unidirectional Composite
10.5.3 Thermomechanical Behavior of a Unidirectional Layer
11 Elastic Constants of a Ply Along an Arbitrary Direction
11.1 Compliance Coefficients
11.2 Stiffness Coefficients
11.3 Case of Thermomechanical Loading
11.3.1 Compliance Coefficients
11.3.2 Stiffness Coefficients
12 Mechanical Behavior of Thin Laminated Plates
12.1 Laminate with Midplane Symmetry
12.1.1 Membrane Behavior
12.1.2 Apparent Moduli of the Laminate
12.1.3 Consequence: Practical Determination of a Laminate Subject
to Membrane Loading
12.1.4 Flexure Behavior
12.1.5 Consequence: Practical Determination for a Laminate Subject to Flexure
12.1.6 Simplified Calculation for Flexure
12.1.7 Case of Thermomechanical Loading
12.2 Laminate without Midplane Symmetry
12.2.1 Coupled Membrane–Flexure Behavior
12.2.2 Case of Thermome chanical Loading
PART III: JUSTIFICATIONS, COMPOSITE BEAMS, AND THICK PLATES
13 Elastic Coefficients
13.1 Elastic Coefficients in an Orthotropic Material
13.2 Elastic Coefficients for a Transversely Isotropic Material
13.2.1 Rotation about an Orthotropic Transverse Axis
13.3 Case of a Ply

14 The Hill–Tsai Failure Criterion
14.1 Isotropic Material: Von Mises Criterion
14.2 Orthotropic Material: Hill–Tsai Criterion
14.2.1 Preliminary Remarks
14.2.2 Case of a Transversely Isotropic Material
14.2.3 Case of a Unidirectional Ply Under In-Plane Loading
14.3 Variation of Resistance of a Unidirectional Ply with Respect
to the Direction of Loading
14.3.1 Tension and Compression Resistance
14.3.2 Shear Strength
15 Composite Beams in Flexure
15.1 Flexure of Symmetric Beams with Isotropic Phases
15.1.1 Degrees of Freedom
15.1.2 Perfect Bonding between the Phases
15.1.3 Equilibrium Relations
15.1.4 Constitutive Relations
15.1.5 Technical Formulation
15.1.6 Energy Interpretation
15.1.7 Extension to the Dynamic Case
15.2 Case of Any Cross Section (Asymmetric)
16 Composite Beams in Torsion
16.1 Uniform Torsion
16.1.1 Torsional Degree of Freedom
16.1.2 Constitutive Relation
16.1.3 Determination of the Function

16.1.4 Energy Interpretation
16.2 Location of the Torsion Center
17 Flexure of Thick Composite Plates
17.1 Preliminary Remarks
17.1.1 Transverse Normal Stress

17.1.2 Transverse Shear Stresses

17.1.3 Hypotheses
17.2 Displacement Field
17.3 Strains
17.4 Constitutive Relations
17.4.1 Membrane Equations
17.4.2 Bending Behavior
17.4.3 Transverse Shear Equation
17.5 Equilibrium Equations
17.5.1 Transverse Equilibrium
17.5.2 Equilibrium in Bending
17.6 Technical Formulation for Bending
17.6.1 Plane Stresses Due to Bending
17.6.2 Transverse Shear Stresses in Bending
17.6.3 Characterization of the Bending, Warping Increments

17.6.4 Warping Functions
17.6.5 Consequences
17.6.6 Interpretation in Terms of Energy
17.7 Examples
17.7.1 Homogeneous Orthotropic Plate
17.7.2 Sandwich Plate


دریافت فایل
جهت کپی مطلب از ctrl+A استفاده نمایید نماید




کتاب


کامپوزیت


کاربرد کامپوزیت


مهندسی مکانیک


زبان اصلی


composite


t.sai


Daniel Gay


مقاله


پاورپوینت


فایل فلش


کارآموزی


گزارش تخصصی


اقدام پژوهی


درس پژوهی


جزوه


خلاصه